also work on M6 folder

This commit is contained in:
Xiao Furen 2025-02-02 23:29:50 +08:00
parent 81ca1a2b19
commit cdd5b406a6
2 changed files with 450 additions and 30 deletions

View file

@ -12,6 +12,16 @@ XLA_FLAGS=--xla_gpu_cuda_data_dir=/home/xfr/.conda/envs/25reg time ./mri_synthmo
XLA_FLAGS=--xla_gpu_cuda_data_dir=/home/xfr/.conda/envs/25reg time mri_synthmorph/mri_synthmorph -m affine -o affine.nii.gz -g moving.nii.gz clipped.nii.gz
find /mnt/1218/Public/dataset2/G4-synthmorph/ -iname metrics.json -exec grep -H "1.*," {} ";"|sort -k 2 -n|head
find /mnt/1218/Public/dataset2/G4-synthmorph/ -iname metrics1.json -exec grep -H ":" {} ";"|sort -k 3 -n|head
find /mnt/1218/Public/dataset2/G4-synthmorph/ -iname metrics1.json -exec grep -H ":" {} ";"|grep joint|sort -k 3 -n|head -n 20
bad registration if metric1 < 1.09
'''
from pathlib import Path
@ -37,8 +47,8 @@ from mri_synthmorph.synthmorph import registration
import surfa as sf
PATIENTS_ROOT = '/mnt/1220/Public/dataset2/G4'
OUT_ROOT = '/mnt/1220/Public/dataset2/G4-synthmorph'
PATIENTS_ROOT = '/mnt/1218/Public/dataset2/G4'
OUT_ROOT = '/mnt/1218/Public/dataset2/G4-synthmorph'
SHELVE = os.path.join(OUT_ROOT, '0shelve')
MAX_Y = 256
@ -98,8 +108,10 @@ def register(ct0, ct1, moving, out_root):
logger.info(' '.join((ct0, ct1, moving, str(out_root))))
orig = sf.load_volume(moving)
base = sf.load_volume(ct0)
base1 = sf.load_volume(ct1)
if modality == 'CT':
clipped = out_root/'clipped.nii.gz'
@ -173,6 +185,11 @@ def register(ct0, ct1, moving, out_root):
# print(fill)
# exit()
METRICS0 = {}
METRICS1 = {}
inp1 = None
inp2 = None
for m in MODELS:
default['model'] = m
@ -194,35 +211,47 @@ def register(ct0, ct1, moving, out_root):
registration.register(arg)
logger.info('registered %s'%m)
if m in (
'rigid',
'affine',
'joint',
):
# which = 'affine' if arg.trans.endswith('.lta') else 'warp'
out = out_root/('%s.nii.gz'%m)
if m in ['affine', 'rigid']:
trans = sf.load_affine(default['out_dir']/'tra_1.lta')
prop = dict(method='linear', resample=True, fill=fill)
orig.transform(trans, **prop).resample_like(base, fill=fill).save(out)
logger.info('transformed %s'%out)
# print(prop)
# exit()
else:
# need to resample before transform in warp, too complicated, just copy it
# trans1 = default['out_dir']/'tra_1.nii.gz'
# trans = sf.load_warp(trans1)
if inp1 == None:
inp1 = sf.load_volume(default['out_dir']/'inp_1.nii.gz')
if inp2 == None:
inp2 = sf.load_volume(default['out_dir']/'inp_2.nii.gz')
sf.load_volume(default['out_dir']/'out_1.nii.gz').resample_like(base, fill=fill).save(out)
logger.info('resampled %s'% out)
out1 = sf.load_volume(default['out_dir']/'out_1.nii.gz')
out2 = sf.load_volume(default['out_dir']/'out_2.nii.gz')
with open(out_root/'metric.txt', 'w') as f_metrics:
for m in MODELS:
out1 = sf.load_volume(out_root/m/'out_1.nii.gz').data
inp2 = sf.load_volume(out_root/m/'inp_2.nii.gz').data
met = normalized_mutual_information(out1, inp2)
f_metrics.write('%s\t%f\n'%(m, met))
out = out_root/('%s.nii.gz'%m)
if m in ['affine', 'rigid']:
trans = sf.load_affine(default['out_dir']/'tra_1.lta')
prop = dict(method='linear', resample=True, fill=fill)
resampled = orig.transform(trans, **prop).resample_like(base, fill=fill)
logger.info('transformed %s'%out)
# print(prop)
# exit()
else:
# need to resample before transform in warp, too complicated, just copy it
# trans1 = default['out_dir']/'tra_1.nii.gz'
# trans = sf.load_warp(trans1)
resampled = out1.resample_like(base, fill=fill)
logger.info('resampled %s'% out)
resampled.save(out)
inp1_out2 = normalized_mutual_information(inp1.data, out2.data)
inp2_out1 = normalized_mutual_information(inp2.data, out1.data)
m0 = normalized_mutual_information(base.data, resampled.data)
m1 = normalized_mutual_information(base1.data, resampled.data)
METRICS0[m] = (inp1_out2, inp2_out1, m0, m1)
METRICS1[m] = max(inp1_out2, inp2_out1, m0, m1)
with open(out_root/'metrics0.json', 'w') as f_metrics:
json.dump(METRICS0, f_metrics, indent=1)
with open(out_root/'metrics1.json', 'w') as f_metrics:
json.dump(METRICS1, f_metrics, indent=1)
return out_root
@ -314,7 +343,9 @@ def check(epath):
def main():
# check('/mnt/1220/Public/dataset2/G4/3L6LOEER') # bad registration
# check('/mnt/1218/Public/dataset2/G4/22M5LAGD') # first case
# check('/mnt/1218/Public/dataset2/G4/2FHZOOLU') # bad registration - cervical
# check('/mnt/1218/Public/dataset2/G4/2EL6U5TF') # bad registration
# exit()
EXCLUDE = (

389
src/m6synthmorph.py Normal file
View file

@ -0,0 +1,389 @@
'''
Use SynthMorph to register M6 images
https://download-directory.github.io/
https://github.com/freesurfer/freesurfer/tree/dev/mri_synthmorph
CUDA_VISIBLE_DEVICES=3 python m6synthmorph.py
XLA_FLAGS=--xla_gpu_cuda_data_dir=/home/xfr/.conda/envs/25reg time ./mri_synthmorph -m affine -o ../test.nii.gz -g '/mnt/1218/Public/dataset2/M6/ZYRGTRKJ/20230728/MR/3D_SAG_T1_MPRAGE_+C_MPR_Tra_20230728143005_14.nii.gz' '/mnt/1218/Public/dataset2/M6/ZYRGTRKJ/20230728/CT/1.1_CyberKnife_head(MAR)_20230728111920_3.nii.gz'
XLA_FLAGS=--xla_gpu_cuda_data_dir=/home/xfr/.conda/envs/25reg time mri_synthmorph/mri_synthmorph -m affine -o affine.nii.gz -g moving.nii.gz clipped.nii.gz
find /mnt/1218/Public/dataset2/G4-synthmorph/ -iname metrics.json -exec grep -H "1.*," {} ";"|sort -k 2 -n|head
find /mnt/1218/Public/dataset2/G4-synthmorph/ -iname metrics1.json -exec grep -H ":" {} ";"|sort -k 3 -n|head
find /mnt/1218/Public/dataset2/G4-synthmorph/ -iname metrics1.json -exec grep -H ":" {} ";"|grep joint|sort -k 3 -n|head -n 20
bad registration if metric1 < 1.09
'''
from pathlib import Path
import argparse
import logging
import json
import os
# import pathlib
import shelve
import shutil
import time
from skimage.metrics import normalized_mutual_information
import filelock
import matplotlib.pyplot as plt
import numpy as np
# import SimpleITK as sitk
from mri_synthmorph.synthmorph import registration
# from synthmorph import registration
import surfa as sf
PATIENTS_ROOT = '/mnt/1218/Public/dataset2/M6'
OUT_ROOT = '/mnt/1218/Public/dataset2/M6-synthmorph'
SHELVE = os.path.join(OUT_ROOT, '0shelve')
MAX_Y = 256
SIZE_X = 249
SIZE_Y = 249
SIZE_Z = 192
# SIZE_Z = 256
MIN_OVERLAP = 0.50
MIN_METRIC = -0.50
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('g4synthmorph.log')
]
)
logger = logging.getLogger(__name__)
def bbox2_3D(img):
r = np.any(img, axis=(1, 2))
c = np.any(img, axis=(0, 2))
z = np.any(img, axis=(0, 1))
if not np.any(r):
return -1, -1, -1, -1, -1, -1
rmin, rmax = np.where(r)[0][[0, -1]]
cmin, cmax = np.where(c)[0][[0, -1]]
zmin, zmax = np.where(z)[0][[0, -1]]
return rmin, rmax, cmin, cmax, zmin, zmax
'''
Namespace(command='register', moving='/nn/7295866/20250127/nii/7_3D_SAG_T1_MPRAGE_+C_20250127132612_100.nii.gz', fixed='/123/onlylian/0/tmpgp96622o/clipped.nii.gz',
model='joint', out_moving='/123/onlylian/0/tmpgp96622o/joint.nii.gz', out_fixed='/123/onlylian/0/tmpgp96622o/out_fixed-joint.nii.gz',
header_only=False, trans='/123/onlylian/0/tmpgp96622o/moving_to_fixed-joint.nii.gz', inverse='/123/onlylian/0/tmpgp96622o/fixed_to_moving-joint.nii.gz',
init=None, mid_space=False, threads=None, gpu=True, hyper=0.5, steps=7, extent=256, weights=None, verbose=False, out_dir=None)
'''
def register(ct0, ct1, moving, out_root):
FREESURFER_HOME = '/mnt/1218/Public/packages/freesurfer-8.0.0-beta/'
# out_root = Path(ct0).resolve().parent/os.path.basename(mr).replace('.nii.gz','')
# print(out_root)
modality = os.path.basename(out_root)
# exit()
out_root = Path(out_root)/os.path.basename(moving).replace('.nii.gz','')
out_root.mkdir(exist_ok=True)
logger.info(' '.join((modality, ct0, ct1, moving, str(out_root))))
orig = sf.load_volume(moving)
base = sf.load_volume(ct0)
base1 = sf.load_volume(ct1)
if modality == 'XA':
exit()
if modality == 'CT':
clipped = out_root/'clipped.nii.gz'
cl = orig.clip(0, 80)
cl.save(clipped)
MODELS = [
'rigid',
# 'affine',
# 'joint',
]
else:
clipped = moving
MODELS = [
'rigid',
'affine',
'joint',
]
# exit()
default = {
'command': 'register',
'header_only': False,
'init': None,
'mid_space': False,
'threads': None,
# 'gpu': False,
'gpu': True,
'verbose': False,
# 'verbose': True,
'hyper': 0.5,
'steps': 7,
'extent': 256,
'weights': None,
# 'model': 'affine',
# 'out_dir': None,
# 'out_fixed': 'out_fixed.nii.gz',
# 'out_moving': 'out_moving.nii.gz',
# 'trans': None,
# 'inverse': None,
'out_fixed': None,
'out_moving': None,
'trans': None,
'inverse': None,
'moving' : clipped,
'fixed' : ct1,
# 'weights': str(Path(__file__).resolve().parent/'mri_synthmorph/models/synthmorph.affine.2.h5'),
}
os.environ["FREESURFER_HOME"] = FREESURFER_HOME
os.environ["XLA_FLAGS"] = '--xla_gpu_cuda_data_dir=%s'% os.environ["CONDA_PREFIX"]
fill = orig.min()
# print(fill)
# exit()
METRICS0 = {}
METRICS1 = {}
inp1 = None
inp2 = None
for m in MODELS:
default['model'] = m
default['out_dir'] = out_root/m
# if m in ('affine', 'rigid'):
# default['trans'] = 'trans.lta'
# default['inverse'] = 'inverse.lta'
# else:
# default['trans'] = 'trans.nii.gz'
# default['inverse'] = 'inverse.nii.gz'
arg=argparse.Namespace(**default)
# CONDA_PREFIX=/home/xfr/.conda/envs/25reg
# XLA_FLAGS=--xla_gpu_cuda_data_dir=/path/to/cuda
logger.info('registering %s'%m)
registration.register(arg)
logger.info('registered %s'%m)
if inp1 == None:
inp1 = sf.load_volume(default['out_dir']/'inp_1.nii.gz')
if inp2 == None:
inp2 = sf.load_volume(default['out_dir']/'inp_2.nii.gz')
out1 = sf.load_volume(default['out_dir']/'out_1.nii.gz')
out2 = sf.load_volume(default['out_dir']/'out_2.nii.gz')
out = out_root/('%s.nii.gz'%m)
if m in ['affine', 'rigid']:
trans = sf.load_affine(default['out_dir']/'tra_1.lta')
prop = dict(method='linear', resample=True, fill=fill)
resampled = orig.transform(trans, **prop).resample_like(base, fill=fill)
logger.info('transformed %s'%out)
# print(prop)
# exit()
else:
# need to resample before transform in warp, too complicated, just copy it
# trans1 = default['out_dir']/'tra_1.nii.gz'
# trans = sf.load_warp(trans1)
resampled = out1.resample_like(base, fill=fill)
logger.info('resampled %s'% out)
resampled.save(out)
inp1_out2 = normalized_mutual_information(inp1.data, out2.data)
inp2_out1 = normalized_mutual_information(inp2.data, out1.data)
m0 = normalized_mutual_information(base.data, resampled.data)
m1 = normalized_mutual_information(base1.data, resampled.data)
METRICS0[m] = (inp1_out2, inp2_out1, m0, m1)
METRICS1[m] = max(inp1_out2, inp2_out1, m0, m1)
with open(out_root/'metrics0.json', 'w') as f_metrics:
json.dump(METRICS0, f_metrics, indent=1)
with open(out_root/'metrics1.json', 'w') as f_metrics:
json.dump(METRICS1, f_metrics, indent=1)
return out_root
def check(epath):
registered = 0
for root, dirs, files in os.walk(epath):
dirs.sort()
RT_DIR = os.path.join(root, 'RT')
ORGAN_DIR = os.path.join(RT_DIR, 'ORGAN')
if not os.path.isdir(ORGAN_DIR):
continue
# if there is no eye, it's no a brain image
eye = None
organs = sorted(os.scandir(ORGAN_DIR), key=lambda e: e.name)
for o in organs:
if 'eye' in o.name.lower():
eye = o
if eye is None:
logger.info('no eye... skip ' + root)
# exit()
return None
ct_image = os.path.join(RT_DIR, 'ct_image.nii.gz')
outdir = os.path.join(OUT_ROOT, os.path.relpath(root, PATIENTS_ROOT))
logger.info(outdir)
os.makedirs(outdir, exist_ok=True)
# ct0_nii = os.path.join(outdir, 'ct0.nii.gz')
ct1_nii = os.path.join(outdir, 'clipped.nii.gz')
# shutil.copy(ct_image, ct0_nii)
ct = sf.load_volume(ct_image)
clipped = ct.clip(0, 80)
clipped.save(ct1_nii)
for root2, dirs2, files2 in os.walk(root):
dirs2.sort()
outdir = os.path.join(OUT_ROOT, os.path.relpath(root2, PATIENTS_ROOT))
if root2.endswith('RT'):
modality = 'RT'
logger.info('copying %s %s' %(root2, outdir))
shutil.copytree(root2, outdir, dirs_exist_ok=True)
# exit()
continue
skip = (root2==root) or ('RT' in root2.split('/'))
if skip:
continue
if root2.endswith('CT'):
modality = 'CT'
else:
modality = 'other'
logger.info(' '.join([str(skip), root2, modality]))
outdir = os.path.join(OUT_ROOT, os.path.relpath(root2, PATIENTS_ROOT))
os.makedirs(outdir, exist_ok=True)
for e in sorted(os.scandir(root2), key=lambda e: e.name):
if not e.name.endswith('.nii.gz'):
continue
if '_RTDOSE_' in e.name:
continue
if '_DTI_' in e.name:
continue
if '_ROI1.' in e.name:
continue
OUT_IMG = os.path.join(outdir, e.name)
if os.path.isfile(OUT_IMG):
logger.info('skip '+ OUT_IMG)
continue
logger.info(' '.join([e.name, e.path]))
moving = e.path
register(ct_image, ct1_nii, moving, outdir)
registered += 1
# exit()
# exit()
return registered
def main():
# check('/mnt/1218/Public/dataset2/G4/22M5LAGD') # first case
# check('/mnt/1218/Public/dataset2/G4/2FHZOOLU') # bad registration - cervical
# check('/mnt/1218/Public/dataset2/G4/2EL6U5TF') # bad registration
# exit()
EXCLUDE = (
# 'LLUQJUY4', #cervical
)
os.makedirs(OUT_ROOT, exist_ok=True)
LOCK_DIR = os.path.join(OUT_ROOT, '0lock')
os.makedirs(LOCK_DIR, exist_ok=True)
for e in sorted(os.scandir(PATIENTS_ROOT), key=lambda e: e.name):
if e.is_dir():
d = shelve.open(SHELVE)
if e.name in d or e.name in EXCLUDE:
logger.info('skip '+ e.name)
d.close()
continue
d.close()
lock_path = os.path.join(LOCK_DIR, '%s.lock'%e.name)
lock = filelock.FileLock(lock_path, timeout=1)
try:
lock.acquire()
except:
logger.info(lock_path + ' locked')
continue
ret = check(e.path)
lock.release()
# exit()
d = shelve.open(SHELVE)
d[e.name] = ret
d.close()
if __name__ == '__main__':
main()