123/registration/fireants_reg.py
2025-02-01 15:57:22 +08:00

157 lines
No EOL
5.6 KiB
Python
Executable file

from pprint import pprint
from time import time
import os
import tempfile
from skimage.metrics import normalized_mutual_information
from fireants.io import Image, BatchedImages
from fireants.registration import RigidRegistration
import SimpleITK as sitk
class fireants_reg:
def register_aux(self, fi, mv):
mytx = ants.registration(
fixed=fi,
moving=mv,
# type_of_transform = 'Rigid',
type_of_transform = 'SyNRA',
# verbose=True,
)
# print(mytx['fwdtransforms'][0])
fwdtransforms = ants.read_transform(mytx['fwdtransforms'][0])
m1 = normalized_mutual_information(fi.numpy(), mytx['warpedmovout'].numpy())
m2 = normalized_mutual_information(mv.numpy(), mytx['warpedfixout'].numpy())
print(m1, m2)
return {
'fwdtransforms': fwdtransforms,
# 'invtransforms': fwdtransforms.invert(),
# inverseTransform(): incompatible function arguments. The following argument types are supported:
# 1. inverseTransform(arg: ants.lib.AntsTransformF22, /) -> ants.lib.AntsTransformF22
# 2. inverseTransform(arg: ants.lib.AntsTransformF33, /) -> ants.lib.AntsTransformF33
# 3. inverseTransform(arg: ants.lib.AntsTransformF44, /) -> ants.lib.AntsTransformF44
# 4. inverseTransform(arg: ants.lib.AntsTransformD22, /) -> ants.lib.AntsTransformD22
# 5. inverseTransform(arg: ants.lib.AntsTransformD33, /) -> ants.lib.AntsTransformD33
# 6. inverseTransform(arg: ants.lib.AntsTransformD44, /) -> ants.lib.AntsTransformD44
# Invoked with types: ants.lib.AntsTransformDF3
'warpedfixout': mytx['warpedfixout'],
'warpedmovout': mytx['warpedmovout'],
'metrics': max(m1, m2)
}
def __init__(self, fi, mv, debug=False):
fixed_image = ants.image_read(fi, dimension=3)
moving_image = ants.image_read(mv, dimension=3)
r1 = self.register_aux(fixed_image, moving_image)
r2 = self.register_aux(moving_image, fixed_image)
if r1['metrics'] > r2['metrics']:
self.res = r1
else:
self.res = dict(r2)
self.res.update({
# 'fwdtransforms': r2['invtransforms'],
'invtransforms': r2['fwdtransforms'],
'warpedfixout': r2['warpedmovout'],
'warpedmovout': r2['warpedfixout'],
})
self.res.update({
'fix': fixed_image,
'mov': moving_image,
})
if debug:
pprint(self.res)
ants.image_write(fixed_image, '0fixed.nii.gz')
ants.image_write(moving_image, '0moving.nii.gz')
ants.image_write(r1['warpedfixout'], '0mf1.nii.gz')
ants.image_write(r1['warpedmovout'], '0fm1.nii.gz')
ants.image_write(r2['warpedmovout'], '0mf2.nii.gz')
ants.image_write(r2['warpedfixout'], '0fm2.nii.gz')
def get_metrics(self):
return self.res['metrics']
def write_warpedmovout(self, out):
ants.image_write(self.res['warpedmovout'], out)
def transform(self, moving, output_filename, is_label=False):
transform1 = next(tempfile._get_candidate_names())+'.mat'
# print(transform1)
ants.write_transform(self.res['fwdtransforms'], transform1)
mi = ants.image_read(moving, dimension=3)
if is_label:
transformed = ants.apply_transforms(self.res['fix'], mi,
transformlist=[transform1], interpolator='genericLabel').astype('uint8')
else:
transformed = ants.apply_transforms(self.res['fix'], mi,
transformlist=[transform1])
# print(transformed)
ants.image_write(transformed, output_filename)
os.remove(transform1)
if __name__ == '__main__':
fi = '/nn/7295866/20250127/nii/a_1.1_CyberKnife_head(MAR)_20250127111447_5.nii.gz'
mv = '/nn/7295866/20250127/nii/7_3D_SAG_T1_MPRAGE_+C_20250127132612_100.nii.gz'
# load the images
image1 = Image.load_file(fi)
image2 = Image.load_file(mv)
# batchify them (we only have a single image per batch, but we can pass multiple images)
fixed_batch = BatchedImages([image1])
moving_batch = BatchedImages([image2])
# rigid registration
scales = [4, 2, 1] # scales at which to perform registration
iterations = [200, 100, 50]
scales = [4, 2] # scales at which to perform registration
iterations = [200, 100]
optim = 'Adam'
lr = 3e-4
# create rigid registration object
rigid_reg = RigidRegistration(
scales, iterations, fixed_batch, moving_batch,
loss_type = 'mi',
# mi_kernel_type = 'gaussian',
# optimizer=optim, optimizer_lr=lr,
# cc_kernel_size=5,
)
# call method
# rigid_reg.optimize()
start = time()
rigid_reg.optimize(save_transformed=False)
end = time()
print("Runtime", end - start, "seconds")
moved = rigid_reg.evaluate(fixed_batch, moving_batch)
reference_img = sitk.ReadImage(fi)
# Preparing the moving image to be written out
moved_image_np = moved[0, 0].detach().cpu().numpy() # volumes are typically stored in tensors with dimensions [Batch, Channels, Depth, Height, Width], so extracting the latter 3 for nifti
moved_sitk_image = sitk.GetImageFromArray(moved_image_np)
moved_sitk_image.SetOrigin(reference_img.GetOrigin())
moved_sitk_image.SetSpacing(reference_img.GetSpacing())
moved_sitk_image.SetDirection(reference_img.GetDirection())
sitk.WriteImage(moved_sitk_image, 'tmp.nii.gz')
# reg_only(fi, mv_img, 'tmp.nii.gz')